#### 8540 Series Universal Power Meter Specifications

Specifications describe the instrument's warranted performance, and apply when using 80300A Series sensors.

Typical performance, (shown in *italics*), is non-warranted.

#### **METER**

Frequency Range: 10 MHz to 40 GHz <sup>14</sup>
Power Range: -70 dBm to +47 dBm
(100 pW to 50 Watt) <sup>14</sup>

### Single Sensor Dynamic Range:

CW Sensors: 90 dB <sup>14</sup>

Peak Power Sensors:

40 dB, Peak 50 dB, CW

**Display Resolution:** User selectable from I dB to 0.001 dB in Log mode, and from I to 4 digits of display resolution in Linear mode.

## **Meter Functions**

**Averaging:** User selectable, auto-averaging or manual from 1 to 512 readings.

**dB Rel and Offset:** Power display can be offset by -99.999 to +99.999 dB to account for external loss/gain.

**Configuration Storage Registers:** Allows up to 20 front panel setups.

# Power Measurements and Display Configuration: Any two of the following channel configurations, simultaneously: A, B, A/B, B/A, A-B, B-A, DLYA, DLYB.

#### **ACCURACY**

Calibrator: Power Sweep Calibration signal to dynamically linearize the sensors.

Frequency: 50 MHz, nominal

0.0 dBm Accuracy: ± 1.2% worst case for one year, over temperature range

**VSWR:** < 1.05 (Return Loss > 33 dB).

of 5° to 35°C.

# System Linearity at 50 MHz for Standard CW Sensors:

±0.02 dB over any 20 dB range from -70 to +16 dBm. ±0.02 dB + (+0 dB, -0.05 dB/dB) from +16 to +20 dBm. ±0.04 dB from -70 to +16 dBm.



Graph shows linearity plus zero set and noise vs. input power

Zeroing Accuracy: (Standard Sensors)
Zero Set: < ±50 pW | 15
Zero Drift: < ±100 pW during | hour | 15
Noise Uncertainity: < ±50 pW measured over a | minute interval. | 15

# **REMOTE INPUTS/OUTPUTS**

**V Prop F Input (BNC):** Used to correct power readings for sensor frequency response using source VpropF output. <sup>16</sup>

Analog Output (BNC): Provides an output voltage of 0 to 10V from either Channel 1 or 2 in either Lin or Log units. Does not operate in Swift or Burst Modes. <sup>16</sup>

**Blanking Output (BNC):** TTL High during power meter zero. Can be used to shut off signal generator RF output during sensor zero. <sup>15</sup>

Trigger Input (BNC): TTL trigger input sig-



<sup>&</sup>lt;sup>14</sup> Depending on sensor used. <sup>15</sup> Specified performance applies with maximum averaging and 24 hour warm-up at constant temperature. <sup>16</sup>Operates in Normal Mode only.

Specifications subject to change without notice.

nal for Swift and Burst modes.

**GPIB Interface:** IEEE-488 and IEC-625 remote programming.

#### **GENERAL SPECIFICATIONS**

#### Temperature Range:

Operating: 0° to 50°C (+32° to +122°F) Storage: -40°C to 70°C (-40° to +158°F)

#### **Power Requirements:**

100/120/220/240V ±10%, 48 to 440 Hz, 20VA typical

#### **Physical Characteristics:**

**Dimensions:** 215 mm (8.4 in) wide, 89 mm (3.5 in) high, 368 mm (14.5 in) deep **Weight:** 4.55 kg (10 lbs)

#### ORDERING INFORMATION

#### **POWER METERS**

8541 Single Input Digital Power Meter (includes 1 each sensor cable)
8542 Two Input Digital Power Meter (includes 2 each sensor cable)

#### **ACCESSORIES**

One manual, one power cord, one (8451) or two (8452) detachable sensor cables.

## **POWER METER OPTIONS**

- 01 Rack mount kit
- 02 Add 256K buffer for Burst Mode Power Readings. Stores 128,000 readings
- 8541 Rear Panel Connections (Sensor and Calibrator, deletes front panel connections)
- 04 8542 Rear Panel Connections (Sensors and Calibrator, deletes front panel connections)
- 05 Soft Carry Case
- 06 Second Analog Output on 8542, -10V to +10V
- 07 Side Mounted Carrying Handle
- 08 Transit Case, (Includes Soft Carry Case)

# Giga-tronics

Giga-tronics Incorporated 4650 Norris Canyon Road San Ramon, California 94583

Telephone: 800 726 4442 or 510 328 4650

Telefax: 510 328 4700